
Stephen Checkoway

Programming Abstractions
Lecture 21: MiniScheme D and E

What can MiniScheme do at this point?

MiniScheme C has numbers

MiniScheme C has pre-defined variables

MiniScheme C has procedure calls to built-in procedures

MiniScheme D: Conditionals

Booleans in MiniScheme

In Scheme: #t and #f

In MiniScheme: True and False

You'll need to add symbols True and False to init-env

‣ Bind them to 'True and 'False

In conditionals, we'll treat anything other than False and 0 as being true

New special form: if

EXP → number	 	 parse into lit-exp  

 | symbol	 	 parse into var-exp  
 | (if EXP EXP EXP)	parse into ite-exp  

 | (EXP EXP*) parse into app-exp

We need a new data type for the if-then-else expression

‣ ite-exp

‣ ite-exp?

‣ ite-exp-cond

‣ ite-exp-then

‣ ite-exp-else

The parser
MiniScheme D

(define (parse input)  
 (cond [(number? input) (lit-exp input)]  
 [(symbol? input) (var-exp input)]  
 [(list? input)  
 (cond [(empty? input) (error ...)]  
 [(eq? (first input) 'if)  
 (if (= (length input) 4)  
 (ite-exp ...)  
 (error ...))]  
 [else (app-exp ...)])] 
 [else (error 'parse "Invalid syntax ~s" input)]))

Parsing if-then-else expressions

If-then-else expressions are recursive

‣ E.g., EXP → (if EXP EXP EXP)

When parsing an if-then-else expression, you want to parse the sub expressions
using parse

The input to parse will look like '(if (lt? x 1) (+ y 100) z)

The condition is (second input)

The then-branch is (third input)

The else-branch is (fourth input)

Evaluating ite-exp

Parse tree is recursive: (parse '(if x 10 20))

‣ (ite-exp (var-exp 'x) (lit-exp 10) (lit-exp 20))

When evaluating, you should call eval-exp recursively

‣ First, call it on the conditional expression

- If the condition is False or 0, call it on the last expression

- Otherwise, call it on the middle expression

What value does MiniScheme return for this expression assuming that x is
bound to 23 and y is bound to 42? 
(if (- y x)  
 25  
 37)

A. 25

B. 37

C. It's an error because (- y x) is a number

9

Can you evaluate all parts of the ite-exp?

What would happen if you instead called eval-exp on all three parts of the
expression before deciding which one to return?

Think about recursive procedures using if

(define (foo n)  
 (if (is-base-case? n)  
 base-case-value  
 (… (foo (sub1 n)) …)))

Primitive procedures returning booleans

Numeric procedures

‣ number?

‣ eqv?	 — like Scheme's eqv? so that it works with True and False

‣ lt?	 — like Scheme's <

‣ gt? — like Scheme's >

‣ lte? — like Scheme's <=

‣ gte? — like Scheme's >=

List procedures

‣ null?

‣ list?

For previous primitive procedures, we had a line like 

[(eq? op '+) (apply + args)]  

in apply-primitive-op.

Will 
[(eq? op 'lt?) (apply < args)]  

work for our less than procedure?

A. It will work because < is
Racket's less than

B. It won't work because lt? is
Racket's less than

C. It won't work because < takes
two arguments and apply
allows any number of arguments

D. It won't work because < returns
#t or #f

12

MiniScheme E: let expressions

Let expressions

Consider 
(let ([x (+ 3 4)]  
 [y 5]  
 [z (foo 8)])  
 body)

To evaluate this, we need to extend the current environment with bindings for x,
y, and z and then evaluate body in the extended environment

Extending environments
(env list-of-symbols list-of-values previous-environment)

Recall that the env constructor requires

‣ a list of symbols

‣ a list of values

‣ a previous environment

The parser doesn't know anything about environments but we can create a
let-exp data type that stores

‣ the list of binding symbols

‣ the list parsed binding values

‣ the parsed body

Parsing let expressions

(let ([x (+ 3 4)] [y 5] [z (foo 8)])  
 body)

The binding list is (second input) where input is the whole let expression

The symbols are (map first binding-list)

‣ These are not parsed, they're just symbols

The binding expressions are (map second binding-list)

‣ How can we parse each of these expressions?

The body is simply (third input) which we can parse

Evaluating let expressions

Evaluating a let expressions just takes a little more work

‣ Evaluate each of the binding expressions in the let-exp  

(map (λ (exp)  
 (eval-exp exp current-env))  
 (let-exp-exps tree))

‣ Bind the symbols to these values by extending the current environment

‣ Evaluate the body of the let expression using the extended environment

What about let*?

Recall that in Scheme, let* acts like let except that variables declared earlier in
the let-binding list can be used for later values

(foo 1 100) prints 101 twice

(bar 1 100) prints 101 and then 201

How could we implement let* in MiniScheme?

(define (foo x y)

 (let ([x (+ x y)]

 [y (+ x y)])

 (displayln x)

 (displayln y)))

(define (bar x y)

 (let* ([x (+ x y)]

 [y (+ x y)])

 (displayln x)

 (displayln y)))

